

Name:

Date:

Thinking with models _ Linear Functions

Investigation Task: Mobile screen usage

Assessment Criterion: D and C

Key concept :
Relationships, Change , Form

Related Concept :
Pattern, Model and
Representation

Global context:
Globalization & Sustainability

Inquiry Question

How can linear functions be used to model and make sense of mobile screen time and battery usage in real life?

Objective: Students will be able to apply linear functions to an authentic real-life situation by modeling how mobile screen time affects battery percentage, and to justify the accuracy and reasonableness of their mathematical solutions..

Context: In this task, students investigate the relationship between screen-on time and battery life using given data. They identify relevant variables, select and apply a linear model, solve problems related to battery usage, and communicate their reasoning clearly. The task emphasizes applying mathematics in context and evaluating whether solutions make sense in real-life mobile screen usage.

Tasks:

Identify

Select

Apply

Justify

Justify

ATL Skills:

Thinking Skills: Critical thinking: Analyzing data and selecting appropriate mathematical strategies.

Transfer Skills: Applying linear functions learned in class to a real life business context.

Communication Skills: Explaining mathematical thinking clearly using appropriate language and representations.

Name:

Date:

Thinking with models _ Linear Functions

Investigation Task: Mobile screen usage Assessment Criterion: D and C

Context: A mobile phone is fully charged at **100%**. When the screen is continuously ON, the battery decreases at a constant rate. After **1 hour** of screen usage, the battery is **92%**, and after **3 hours**, it is **76%**.

1. **Identify** the independent and dependent variables related to mobile screen usage and battery percentage.
2. **Select** an appropriate linear model to represent the relationship between screen time and battery level.
3. **Apply** the selected model to form a linear equation.
4. **Solve** the equation to:
 - a. Find the battery percentage after **5 hours** of screen usage.
 - b. Determine how long the screen can remain ON before the battery reaches **20%**.

5. **Justify the degree of accuracy** of your solutions (rounding, units, and practicality).
6. **Justify whether your solution makes sense** in the real-life context of mobile screen usage.

Curriculum Framework

Key Concepts

1. Relationships

The connection between screen time and battery percentage, where one changes as the other changes.

2. Representation

Showing battery usage using mathematical forms such as a linear equation.

3. Logic

Using clear mathematical reasoning to explain and justify battery-life solutions.

Related Concepts

1. Linear Model

A mathematical model that shows battery percentage decreasing at a constant rate over time.

2. Rate of Change

The amount the battery percentage decreases for each hour of screen usage.

3. Accuracy

How precise and appropriate the calculated battery percentage and time values are.

Global Contexts

1. Scientific and Technical Innovation

Exploring how mathematics is used to understand and improve mobile technology.

2. Globalization and Sustainability

Understanding battery usage to support efficient and responsible use of technology.

3. Personal and Cultural Expression

Examining how individual screen-use habits affect daily life.

Statements of Inquiry

1. Scientific and Technical Innovation

Mathematical relationships help model and explain how mobile screen usage affects battery life.

2. Globalization and Sustainability

Applying linear models supports informed and sustainable use of mobile devices.

3. Personal and Cultural Expression

Logical reasoning allows individuals to understand and manage their screen-time behavior.

GRASPS – Mobile Screen Usage Investigation

G – Goal

To use a linear function to model and analyze how mobile screen time affects battery percentage and justify the accuracy and reasonableness of the solution.

R – Role

You are a **mobile usage analyst** investigating battery drain during screen usage.

A – Audience

Mobile phone users who want to understand and manage their screen time effectively.

S – Situation

A mobile phone battery drains at a constant rate when the screen is ON, and users need to predict battery life using mathematical models.

P – Product / Performance

A written mathematical investigation that includes a linear equation, solutions, and justifications linked to the real-life context.

S – Standards / Success Criteria

- Correct identification of variables
- Appropriate selection and application of a linear model
- Accurate solutions
- Clear justification of accuracy and real-life reasonableness